Prosodic modulation and the role of the segmental gestural molecule

Laboratory Phonology 17 July 7, 2020

Acknowledgement

This research was supported by NIH DC003172 (Byrd) and DC007124 (Narayanan).

Variable intergestural timing

• Intergestural timing varies as a function of prosody and speech rate

 Variability in timing is mostly examined across segments (e.g., CV, CC coordination)

Beňuš & Šimko, 2014; Byrd, 1996; Byrd & Choi 2010; Cho, 2001; Katsika, 2018; Marin & Pouplier, 2010; Mücke, 2014; Saltzman & Byrd, 2000

Segment-internal intergestural timing

• Gestures within a segment have a particularly high degree of cohesiveness (compared to those across segments)

```
Byrd, 1996; Fowler, 2015; Hoole & Pouplier, 2015; Kelso et al., 1984; Maddieson & Ladefoged, 1989; Munhall et al., 1994
```

- This tight coupling leads to segment-specific stable coordination pattern
 - Timing is resistant to individual gestural variations?
 - Timing is resistant to prosodic variations?

Across-vs. within-segment timing

Consonantal sequences

 As gestural duration varies, intergestural timing covaries

Complex segments

- The lag between gestural onsets are strictly coordinated, and are not affected by the duration of gestures
- → Segment timing: Lack of covariance

Transgestural gestural slowing

• In the vicinity of a phrasal boundary, gestural activation trajectories temporally stretch

- This boundary-induced local slowing may:
 - Lengthen gestural duration
 - Reduce gestural overlap (thus increase intergestural lag)
 - Increase spatial magnitude

(Saltzman & Byrd 2000; Byrd & Saltzman 2003)

Timing variability/stability

• CC# timing: malleable to prosodic modulations

• C# timing: resistant to prosodic modulations

Segmental gestural molecule

- Segments with multiple gestures
 - Multiple oral gestures
 /l/ /r//w//kp//pj//kw/
 - Oral and non-oral gestures
 /n//m//k'//6/

Segment-specific goals

- Distinct coordination goals may serve to underlie phonologically contrastive organization of gestures
- These goals may be relevant to aerodynamic, acoustic, or perceptual goals
 - Doubly-articulated stops (perceptual recoverability)
 - Non-pulmonic consonants (aerodynamic goal)
 - Pre-, post-nasal and nasal consonants (?)

Goal

• Use variations in individual gestures and prosody to probe temporal coordination patterns within a segment

• Investigate velum-oral coordination in nasal consonants to understand a segment-specific goal for nasals

Research questions

A. Is the lag between the gestures of a segmental molecule relatively **insensitive** to the variation of the individual gestures (compared to across-segment lags)?

H₁. Within-segment timing

The lag between the gestures is not affected by the duration and the magnitude of the gestures

H2. Across-segment timing

The lag between the gestures *increases* with the duration and magnitude of the earlier gesture

Research questions

B. How do prosodic effects play a role in segment-internal gestures and their timing?

H. Segment-timing stability

Intergestural lag **remains stable** across prosodic variations

Methods

- Data acquisition
 - Mid-sagittal vocal tract speech imaging data using real-time MRI
- Subjects
 - Five native Korean speakers
- Target items
 - Coda nasals at boundaries:/n#p//n#t//n#n/
- Prosodic conditions
 - Wd, AP, AP+focus, IP (7/8 reps each)

Stimuli example

- Wd boundary

SUBJECT, ADV AP [NOUN number] VERB

- Sam slowly cleaned [four chalkboards].

- AP boundary

SUBJECT, AP[ADJ NOUN] AP[number] VERB

- Sam cleaned four [large chalkboards].

- AP boundary+focus

SUBJECT, AP [ADJ NOUN] AP [number] VERB

- Sam cleaned <u>four</u> [large chalkboards].

- IP boundary

SUBJECT, AP[ADJ NOUN], IP[.....]

- This film called [large chalkboards],

Boundary strength

Data analysis

- Oral gesture (TT)
 - ROI analysis
- Velum gesture (VEL)
 - Centroid tracking analysis

Tracking VEL lowering (/ama/)

Measurements

Duration x Magnitude

• Positive correlation between duration and magnitude

Relative timing x Duration

• Onset lag in /n/ *increases* with the duration of the VEL gesture

Relative timing x Magnitude

• Onset lag in /n/ *increases* with the magnitude of the VEL gesture

Onset-to-target lag

• TT onset to VEL target lag in /n/ is *not affected* by the duration and magnitude of gestures

Onset-to-target lag

• TT onset to VEL target lag in /n/ is *not affected* by the duration and magnitude of gestures

Segment-specific timing

- Korean coda nasals
 - Oral onset to velum target lag shows consistency over gestural duration/magnitude

Prosodic effects on the oral gesture

• Boundary & focus effects on TT duration & magnitude

Prosodic effects on the velum gesture

• Boundary & focus effects on VEL duration & magnitude

Prosodic effects on the timing

No effect of prosody on gestural lags

Individual lag variation

Summary

- Segment-specific timing
 - The o-t lag between gestures is independent of the duration and the magnitude of the gestures
- The effect of π -gesture on timing?

- Stable relative timing across prosodic variations
 - This crucial timing stability distinguishes strong segment-internal coupling

Conclusion

Thank you

- Beňuš, Š., & Šimko, J. (2014). Emergence of prosodic boundary: Continuous effects of temporal affordance on inter-gestural timing. Journal of Phonetics, 44, 110-129.
- Byrd, D. (1996). A phase window framework for articulatory timing. *Phonology*, 13(2), 139-169. Byrd, D., Saltzman, E. 2003. The elastic phrase: Modeling the dynamics of boundary-adjacent lengthening. J. Phonetics, 31(2):149-180.
- **Byrd, D., & Choi, S. (2010).** At the juncture of prosody, phonology, and phonetics-The interaction of phrasal and syllable structure in shaping the timing of consonant gestures. *Laboratory phonology*, 10, 31-59.
- Byrd, D., & Saltzman, E. (2003). The elastic phrase: Modeling the dynamics of boundary-adjacent lengthening. Journal of Phonetics, 31(2), 149-180.
- Cho, T. (2001). Effects of morpheme boundaries on intergestural timing: Evidence from Korean. *Phonetica*, 58(3), 129-162.
- **Fowler, C. A. (2015).** The segment in articulatory phonology. *The segment in phonetics and phonology*, 24-43.
- Hoole, P., & Pouplier, M. (2015). 7 Interarticulatory Coordination Speech Sounds. The Handbook of Speech Production, 133.
- Katsika, A. (2018). The kinematic profile of prominence in Greek. Proc. of Speech Prosody, 764-768.
- Kelso, J. A. S., Tuller, B., Vatikiotis-Bateson, E., & Fowler, C. A. (1984). Functionally specific articulatory cooperation following jaw perturbations during speech: Evidence for coordinative structures. Journal of Experimental Psychology: Human Perception and Performance 10(6). 812-832.
- Maddieson, I., & Ladefoged, P. (1989). Multiply articulated segments and the feature hierarchy. UCLA working papers in phonetics, 72, 116-138.
- Marin, S., & Pouplier, M. (2010). Temporal organization of complex onsets and codas in American English: Testing the predictions of a gestural coupling model. *Motor Control*, 14(3), 380-407.
- Mücke, D., & Grice, M. (2014). The effect of focus marking on supralaryngeal articulation—Is it mediated by accentuation? 7. Phonetics, 44:47-61.
- Munhall, K., A. Löfqvist, A., & Kelso, J. A. S. (1994). Lip-larynx coordination in speech: effects of mechanical perturbations to the lower lip. Journal of the Acoustical Society of America, 95(1), 3605–3616.
- Nam, H., Goldstein, L., Saltzman, E., & Byrd, D. (2004). TADA: An enhanced, portable Task Dynamics model in MATLAB. The Journal of the Acoustical Society of America, 115(5), 2430-2430.
- Oh, M., & Lee, Y. (2018). ACT: An Automatic Centroid Tracking tool for analyzing vocal tract actions in real-time magnetic resonance imaging speech production data. J. Acoustical Society of America, 144(4), EL290-EL296.
- Pastätter, M., & Pouplier, M. (2017). Articulatory mechanisms underlying onset-vowel organization. 7. Phonetics, 65:1-14.
- Saltzman, E., & Byrd, D. (2000). Task-dynamics of gestural timing: Phase windows and multifrequency rhythms. *Human Movement Science*, 19(4), 499-526.
- Saltzman, E., Nam, H., Krivokapić, J., & Goldstein, L. (2008). A task-dynamic toolkit for modelling the effects of prosodic structure on articulation. Proc. of Speech Prosody, 175-184.
- Shaw, J. A., Durvasula, K., & Kochetov, A. (2019). The temporal basis of complex segments. Proc. of the Int. Cong. of Phonetic Sci., Melbourne, 676-680.