Prosodic modulation and the role of the segmental gestural molecule

Laboratory Phonology 17

July 7, 2020

Acknowledgement
This research was supported by NIH DC003172 (Byrd) and DC007124 (Narayanan).

Miran Oh
Department of Linguistics
University of Southern California
Variable intergestural timing

• Intergestural timing varies as a function of prosody and speech rate

• Variability in timing is mostly examined across segments (e.g., CV, CC coordination)

Beňuš & Šimko, 2014; Byrd, 1996; Byrd & Choi 2010; Cho, 2001; Katsika, 2018; Marin & Pouplier, 2010; Mücke, 2014; Saltzman & Byrd, 2000
Segment–internal intergestural timing

• Gestures within a segment have a particularly high degree of cohesiveness (compared to those across segments)
 Byrd, 1996; Fowler, 2015; Hoole & Pouplier, 2015; Kelso et al., 1984; Maddieson & Ladefoged, 1989; Munhall et al., 1994

• This tight coupling leads to segment–specific stable coordination pattern
 • Timing is resistant to individual gestural variations?
 • Timing is resistant to prosodic variations?
Across- vs. within-segment timing

Consonantal sequences
• As gestural duration varies, intergestural timing covaries

Complex segments
• The lag between gestural onsets are strictly coordinated, and are not affected by the duration of gestures

→ Segment timing: Lack of covariance

From Shaw et al., (2019)
Transgestural gestural slowing

• In the vicinity of a phrasal boundary, gestural activation trajectories temporally stretch

• This boundary-induced local slowing may:
 • Lengthen gestural duration
 • Reduce gestural overlap (thus increase intergestural lag)
 • Increase spatial magnitude

(Saltzman & Byrd 2000; Byrd & Saltzman 2003)
Timing variability/stability

- CC# timing: **malleable** to prosodic modulations

- C# timing: **resistant** to prosodic modulations

(Byrd & Choi, 2010)
Segmental gestural molecule

- Segments with multiple gestures

 - Multiple oral gestures
 /l/ /r/ /w/ /\tilde{KP}/ /p/ /k^w/

 - Oral and non-oral gestures
 /n/ /m/ /k'/ /6/
Segment–specific goals

- Distinct coordination goals may serve to underlie phonologically contrastive organization of gestures
- These goals may be relevant to aerodynamic, acoustic, or perceptual goals
 - Doubly–articulated stops (perceptual recoverability)
 - Non–pulmonic consonants (aerodynamic goal)
 - Pre–, post–nasal and nasal consonants (?)
Goal

• Use variations in individual gestures and prosody to probe temporal coordination patterns within a segment

• Investigate velum–oral coordination in nasal consonants to understand a segment–specific goal for nasals
Research questions

A. Is the lag between the gestures of a segmental molecule relatively **insensitive** to the variation of the individual gestures (compared to across-segment lags)?

<table>
<thead>
<tr>
<th>H1. Within-segment timing</th>
<th>H2. Across-segment timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lag between the gestures is not affected by the duration and the magnitude of the gestures</td>
<td>The lag between the gestures increases with the duration and magnitude of the earlier gesture</td>
</tr>
</tbody>
</table>
Research questions

B. How do prosodic effects play a role in segment–internal gestures and their timing?

H. Segment–timing stability

Intergestural lag remains stable across prosodic variations

π-gesture

Segment internal coupling
Methods

• Data acquisition
 • Mid-sagittal vocal tract speech imaging data using real-time MRI

• Subjects
 • Five native Korean speakers

• Target items
 • Coda nasals at boundaries: /n#p/ /n#t/ /n#n/

• Prosodic conditions
 • Wd, AP, AP+focus, IP (7/8 reps each)
Stimuli example

- Wd boundary
 SUBJECT, \(\text{ADV}_{\text{AP}}\text{[NOUN number]}\) VERB
 - Sam slowly cleaned [four chalkboards].

- AP boundary
 SUBJECT, \(\text{AP}_{\text{[ADJ NOUN]}\text{[number]}\text{[NOUN]}}\) VERB
 - Sam cleaned four [large chalkboards].

- AP boundary+focus
 SUBJECT, \(\text{AP}_{\text{[ADJ NOUN]}\text{[number]}\text{[NOUN]}}\) VERB
 - Sam cleaned four [large chalkboards].

- IP boundary
 SUBJECT, \(\text{AP}_{\text{[ADJ NOUN]}, \text{IP}[\ldots]}\) VERB
 - This film called [large chalkboards],
Data analysis

- Oral gesture (TT)
 - ROI analysis

- Velum gesture (VEL)
 - Centroid tracking analysis
Tracking VEL lowering (/ama/)

(Oh & Lee, 2018)
Measurements

- TT constriction duration
- Onset lag
- VEL lowering duration
- TT constriction magnitude
- VEL lowering magnitude

• All measures are z-scored within speaker
• Significance level is set as p < .01
Duration x Magnitude

- Positive correlation between duration and magnitude
Relative timing x Duration

- Onset lag in /n/ *increases* with the duration of the VEL gesture

Shaw et al., (2019)
Relative timing x Magnitude

- Onset lag in /n/ increases with the magnitude of the VEL gesture
Onset-to-target lag

• TT onset to VEL target lag in /n/ is *not affected* by the duration and magnitude of gestures.
Onset-to-target lag

• TT onset to VEL target lag in /n/ is *not affected* by the duration and magnitude of gestures.
Segment-specific timing

- Korean coda nasals
 - Oral onset to velum target lag shows consistency over gestural duration/magnitude
Prosodic effects on the oral gesture

- Boundary & focus effects on TT duration & magnitude
Prosodic effects on the velum gesture

- Boundary & focus effects on VEL duration & magnitude
Prosodic effects on the timing

• No effect of prosody on gestural lags
Individual lag variation
Summary

• Segment-specific timing
 • The o-t lag between gestures is independent of the duration and the magnitude of the gestures

• The effect of π-gesture on timing?

• Stable relative timing across prosodic variations
 • This crucial timing stability distinguishes strong segment-internal coupling
Conclusion
Thank you